Unsur yang paling baik digunakan untuk menghantarkan arus listrik adalah

Konduktivitas didefinisikan sebagai kemudahan menghantarkan muatan listrik atau panas melewati logam. Konduktor adalah suatu bahan atau zat yang bisa menghantarkan listrik atau panas (kalor) dengan baik. Sebaliknya, isolator adalah suatu bahan atau zat yang sukar menghantarkan listrik dan panas. Contoh konduktor biasa adalah benda logam seperti, besi, baja, tembaga dll sedangkan contoh isolator adalah kayu, plastik, dan karet. konduktivitas termal mengacu pada kemudahan yang panas melewati konduktor atau isolator. Baca juga: Pengertian logam dan jenis-jenisnya

Nah ngomong-ngomong soal konduktor tahukah logam apa saja yang paling baik menghantarkan listrik dan panas. Baca juga: Pengertian kalor dan satuannya

Konduktivitas semua logam dibandingkan dengan yang perak. Pada skala nol sampai 100, dimana 100 merupakan yang paling konduktif, perak peringkat 100. Selain menjadi konduktor listrik yang kuat, perak tidak membuat percikan api dengan mudah. Hal ini digunakan dalam komponen listrik seperti kontak dan sirkuit. Penting untuk dicatat bahwa tingkat emas 76 pada skala konduktivitas. kepercayaan populer menunjukkan bahwa emas merupakan konduktor yang lebih baik dari pada perak, tapi fakta membuktikan asumsi ini tidak benar.

Dan  berikut ini merupakan 10 logam yang menghantarkan listrik dan panas paling baik.

Unsur yang paling baik digunakan untuk menghantarkan arus listrik adalah

Perak adalah unsur logam dengan nomor atom 47. Simbolnya adalah Ag, dari bahasa Latin argentum, dari akar PIE yang direkonstruksi sebagai *h₂erǵ-, "abu-abu" atau "bersinar". Sebuah logam transisi lunak, putih, dan berkilau, ia memiliki konduktivitas listrik, konduktivitas termal, dan reflektivitas tertinggi di antara semua logam.

Tembaga adalah suatu unsur kimia dalam tabel periodik yang memiliki lambang Cu dan nomor atom 29. Lambangnya berasal dari bahasa Latin Cuprum.Tembaga merupakan konduktor panas dan listrik yang baik. Selain itu unsur ini memiliki korosi yang cepat sekali.

Emas adalah unsur kimia dlm tabel periodik yang memiliki simbol Au (bahasa Latin: 'aurum') dan nomor atom 79. Sebuah logam transisi (trivalen dan univalen) yang lembek, mengkilap, kuning, berat, "malleable", dan "ductile". Emas tidak bereaksi dengan zat kimia lainnya tapi terserang oleh klorin, fluorin dan aqua regia. Logam ini banyak terdapat di nugget emas atau serbuk di bebatuan dan di deposit alluvial dan salah satu logam coinage. Kode ISOnya adalah XAU. Emas melebur dalam bentuk cair pada suhu sekitar 1000 derajat celcius.

Aluminium merupakan konduktor listrik yang baik. Ringan dan kuat. Merupakan konduktor yang baik juga buat panas. Dapat ditempa menjadi lembaran, ditarik menjadi kawat dan diekstrusi menjadi batangan dengan bermacam-macam penampang. Tahan korosi.

Seng atau zink adalah logam yang dengan lambing Zn. Seng telah lama digunakan paling tidak sejak abad ke-10 SM. Logam seng merupakan logam yang berwarna putih kebiruan, berkilau dan bersifat diamagnetik.  Logam seng merupakan logam yang keras dan rapuh pada berbagai macam suhu dan dapat ditempa pada suhu 100-150 derajat celcius. Seng juga lebih mampu menghantarkan listrik daripada logam-logam lainnya dan seng memiliki titik lebur terendah diantara semua logam lainnya.

Nikel merupakan unsur kimia logam dengan lambang Ni.Nikel adalah logam yang memilki sifat tahan karat. Nikel murni bersifat lembek, tetapi bila dipadukan dengan besi dan, krom dan logam lainnya maka dapat membentuk baja yang keras dan tahan karat.


Kuningan merupakan logam paduan antara tembaga (Cu) dan seng (Zn). Perbandingan antara tembaga dan seng beragam, tergantung dengan karakteristik kuningan yang ingin dihasilkan. Namun, umumnya kadar tembaga antara 60-90% dari massa total.

Perunggu merupakan logam campuran yang mengandung tembaga (Cu) sebagai komponen utamanya dengan jenis logam lain seperti timah (Sn). Selain dengan timah logam lain yang dapat dicampurkan yaitu mangan (Mn), aluminium (Al), fosfor (P), atau silikon (Si). Pada umumnya, dalam perunggu terkandung tembaga sebesar 88% sedangkan 12% adalah timah.

Besi adalah logam yang berasal dari bijih besi (hasil tambang) yang banyak digunakan untuk kehidupan manusia sehari-hari dalam tabel periodik, besi mempunyai symbol Fe dan memiliki omor atom 26. Besi juga mempunyai nilai ekonomis yang tinggi.

Besi merupakan logam yang paling banyak dan paling beragam penggunaannya. Hal itu dikarenakan beberapa hal seperti: Limpahan besi di kulit bumi cukup besar, Pengolahannya relatif mudah dan murah, serta besi mempunyai sifat-sifat yang menguntungkan serta mudah dimodifikasi. Salah satu kelemahan besi adalah besi mudah mengalmi korosi.

Platina adalah anggota unsur golongan platina dan unsur dalam golongan 10 pada tabel periodik. Ia memiliki enam isotop alami. Logam ini adalah salah satu unsur langka di kerak bumi dengan kelimpahan rata-rata sekitar 5 μg/kg. Ia terdapat dalam beberapa bijih nikel dan tembaga bersama dengan beberapa deposit alami, sebagian besar di Afrika Selatan, yang menyumbang 80% dari produksi dunia. Karena kelangkaan dalam kerak bumi, hanya beberapa ratus ton yang diproduksi setiap tahun, dan memberikan manfaat penting, logam ini menjadi sangat berharga dan merupakan komoditas logam mulia utama.

Demikian artikel saya yang berjudul 10 Logam yang merupakan Konduktor Terbaik semoga bisa bermanfaat bagi agan sekalian.

Penghantar listrik (konduktor) adalah suatu material yang mudah menghantarkan arus listrik. Sifat hantarannya adalah memindahkan elektron-elektron dari satu titik kelistrikan ke titik kelistrikan lainnya secara mudah. Kegunaan utama dari penghantar listrik adalah mengalirkan arus listrik.[1] Penghantar listrik memiliki inti atom dengan elektron yang terikat secara lemah dan dapat bergerak secara bebas. Proses penghantaran listrik terjadi ketika material yang bermuatan positif dihubungkan dengan penghantar listrik. Interaksi yang timbul ialah perpindahan elektron dari penghantar listrik ke material yang bermuatan positif.[2] Pengaliran arus listrik secara mudah melalui penghantar listrik disebabkan kandungan muatan listrik mudah bergerak saat timbul medan listrik meski dalam jumlah yang sangat kecil. Medan listrik pada penghantar bernilai nol selama tidak teraliri listrik.[3]

Unsur yang paling baik digunakan untuk menghantarkan arus listrik adalah

Overhead conductor membawa tenaga listrik dari stasiun pembangkit listrik ke konsumen.

Penghantar listrik memiliki celah pita valensi yang sangat kecil dan tipis sehingga elektron valensi pada atom dapat berpindah dengan mudah ke atom yang lain dengan menggunakan energi yang sangat sedikit. Elektron yang bergerak secara bebas dari satu orbital atom ke orbital atom yang lainnya secara terus-menerus menyebabkan hantaran listrik. Orbital yang ditinggal oleh elektron disebut sebagai lubang. Orbital atom lain berikutnya akan mengalami lubang yang sama dengan orbital pertama karena mengalami pengurangan jumlah elektron. Proses ini berlangsung secara terus-menerus sehingga timbul aliran listrik.[4]

Jumlah elektron valensi

Daya hantar listrik dari suatu penghantar listrik ditentukan oleh jumlah elektron valensi yang ada pada tiap orbital atom penyusun bahan listrik. Penghantar listrik dengan daya hantar listrik yang baik memiliki 1 sampai 3 elektron valensi. Di dalam orbital atom, gaya tarik yang lemah selalu terjadi antara elektron valensi dengan proton. Elektron valensi dapat bergerak secara bebas meskipun gaya gerak listrik terjadi dalam harga yang sangat kecil.[5]

Semakin banyak elektron bebas di dalam suatu penghantar listrik, maka nilai hambatan listrik akan semakin kecil dan konduktivitas listrik akan semakin baik. Sebaliknya, semakin sedikit elektron bebas di dalam suatu penghantar, maka nilai hambatan listrik akan semakin besar dan konduktivitas listrik akan semakin buruk. Jenis penghantar listrik dengan tingkat konduktivitas listrik yang baik dan nilai hambatan listrik yang rendah ialah tembaga, aluminium, emas, dan perak.[5]

Dalam keadaan seimbang, penghantar listrik selalu menghasilkan medan listrik dalam posisi serenjang dengan permukaan penghantar listrik. Pada kondisi tidak seimbang, medan listrik pada penghantar listrik akan memiliki komponen yang menyinggung permukaan yang serenjang. Arus listrik pada permukaan dihasilkan oleh komponen medan yang menyinggung permukaan akibat adanya gaya pada muatan. Perhitungan jumlah medan listrik yang dihasilkan di bagian permukaan penghantar listrik dilakukan dengan menerapkan hukum Gauss.[6] Muatan listrik pada penghantar listrik akan bergerak jika diberikan sebuah medan listrik di sekelilingnya, pada sebuah penghantar listrik. Besarnya nilai medan listrik pada semua daerah titik di dalam penghantar listrik sama dengan nol.[7]

Gaya muatan listrik

Dalam keadaan seimbang, muatan listrik pada penghantar listrik selalu terletak di bagian permukaan. Gaya tolak-menolak akan terjadi jika penghantar listrik diberi muatan listrik. Adanya gaya tolak ini merupakan akibat dari sifat muatan listrik di dalam penghantar listrik yang selalu bergerakan bebas secara mudah. Muatan-muatan listrik akan terus saling tolak-menolak hingga mencapai kondisi yang tidak bisa bergerak sama sekali.[8]

Pengaliran arus listrik

Jumlah pengaliran arus listrik berbanding lurus dengan luas penampang penghantar listrik. Semakin besar ukuran luas penampang, maka daya hantar semakin besar. Sebaliknya, semakin kecil ukuran luas penampang maka daya hantar semakin kecil. Perbedaan jumlah pengaliran arus disebabkan penghantar listrik memiliki hambatan jenis yang sebanding dengan luas penampang.[5]

Hambatan listrik

Hambatan listrik pada sebagian besar penghantar listrik akan meningkat seiring meningkatnya suhu. Peningkatan suhu menyebabkan pergerakan elektron menjadi lebih cepat, tetapi arah pergerakannya acak dan tidak beraturan sehingga meningkatkan nilai hambatan listrik.[5] Pada penghantar listrik yang memiliki bahan dan ukuran luas penampang yang sama, besarnya nilai hambatan listrik ditentukan oleh ukuran panjang penghantar. Hambatan listrik ini umumnya menggunakan satuan Ohm per meter.[9]

Daya hantar listrik

Penghantar listrik yang berbentuk cairan maupun benda padat memiliki daya hantar listrik. Pengukuran daya hantar listrik dari suatu penghantar listrik dilakukan dengan kuantisasi. Nilai dari daya hantar listrik mempengaruhi reaksi kimia, jumlah elektron valensi, dan tingkat pengumpulan ion-ion pada penghantar listrik dalam larutan. Daya hantar listrik yang tinggi dimiliki oleh senyawa organik, sedangkan daya hantar listrik yang lemah dimiliki oleh senyawa anorganik.[10]

Penghantar listrik yang dialiri oleh arus listrik selalu menghasilkan medan magnet di sekelilingnya. Hubungan antara keberadaan medan magnet di sekeliling penghantar mulai diketahui pada akhir abad ke-18 dan awal abad ke-19 Masehi.[11]

Penangkal petir digunakan untuk mengalihkan arah sambaran petir menuju ke bagian luar dari bangunan sehingga tidak merusak peralatan listrik di dalam bangunan. Penangkal petir terdiri dari dua batang penghantar dengan salah satu ujung batang berbentuk runcing. Bahan penyusun dari penangkal petir merupakan penghantar listrik. Penangkal petir merupakan penghantar listrik yang panjang dan memiliki dua bagian yang terletak di ujung dan dipasang pada letak yang berjauhan. Bagian pertama dipasang secara vertikal di atas atap bangunan dan ujung kedua ditanam di dalam tanah.[12] Muatan listrik yang terkumpul di ujung penangkal petir dialirkan melalu kabel yang terhubung antara batang penghantar di atap bangunan dan batang penghantar di dalam tanah. Pengaliran petir ke tanah membuat udara di sekitar bangunan selalu bermuatan netral. Keberadaan penangkal petir membuat lingkungan di sekitar bangunan jarang terkena sambaran petir.[13]

Kapasitor elektrostatik

Dalam bidang elektrostatika, penghantar listrik digunakan sebagai kapasitor yang menyimpan muatan listrik. Penyimpanan muatan listrik dilakukan dengan memberikan sebuah potensial listrik seperti baterai.[14]

  1. ^ Ponto 2018, hlm. 62.
  2. ^ Listiana, dkk. (2009). Ilmu Pengetahuan Alam 2 (PDF). Surabaya: Amanah Pustaka. hlm. 22–12. ISBN 978-602-8542-06-7. Diarsipkan dari versi asli (PDF) tanggal 2021-01-31. Diakses tanggal 2021-01-27.  Parameter |url-status= yang tidak diketahui akan diabaikan (bantuan)
  3. ^ Abdullah 2017, hlm. 84.
  4. ^ Hasan, M., Fitri, Z., dan Rahmayani, R. F. I. (2017). Ikatan Kimia. Banda Aceh: Syiah Kuala University Press. hlm. 114. ISBN 978-602-5679-04-9.  Parameter |url-status= yang tidak diketahui akan diabaikan (bantuan)Pemeliharaan CS1: Banyak nama: authors list (link)
  5. ^ a b c d Setiyo 2017, hlm. 7.
  6. ^ Abdullah 2017, hlm. 85.
  7. ^ Putra, Purnomosari, dan Ngadiono 2016, hlm. 49.
  8. ^ Abdullah 2017, hlm. 84-85.
  9. ^ Setiyo 2017, hlm. 17-18.
  10. ^ Ponto 2018, hlm. 61.
  11. ^ Setiyo 2017, hlm. 97.
  12. ^ Abdullah 2017, hlm. 92.
  13. ^ Abdullah 2017, hlm. 93.
  14. ^ Putra, Purnomosari, dan Ngadiono 2016, hlm. 50.
  1. Abdullah, Mikrajuddin (2017). Fisika Dasar II (PDF). Bandung: Institut Teknologi Bandung.  Parameter |url-status= yang tidak diketahui akan diabaikan (bantuan)
  2. Ponto, Hantje (2018). Dasar Teknik Listrik (PDF). Sleman: Deepublish. ISBN 978-623-7022-93-0. Diarsipkan dari versi asli (PDF) tanggal 2021-01-29. Diakses tanggal 2021-01-27.  Parameter |url-status= yang tidak diketahui akan diabaikan (bantuan)
  3. Putra, V.G.V., Purnomosari, E., dan Ngadiono (2016). Pengantar Listrik Magnet dan Terapannya (PDF). Sleman: CV. Mulia Jaya. ISBN 978-602-72713-2-6.  Parameter |url-status= yang tidak diketahui akan diabaikan (bantuan)Pemeliharaan CS1: Banyak nama: authors list (link)
  4. Setiyo, Muji (2017). Listrik & Elektronika Dasar Otomotif (PDF). Magelang: Unimma Press. ISBN 978-602-51079-0-0.  Parameter |url-status= yang tidak diketahui akan diabaikan (bantuan)
  • William Henry Preece. On Electrical Conductors. 1883.
  • Oliver Heaviside. Electrical Papers. Macmillan, 1894.
  • Annual Book of ASTM Standards: Electrical Conductors. American Society for Testing and Materials. (every year)
  • IET Wiring Regulations. Institution for Engineering and Technology. wiringregulations.net
  • BBC: Key Stage 2 Bitesize: Electrical Conductors Diarsipkan 2012-03-30 di Wayback Machine.
  • GSU: Hyperphysics: Conductors and Insulators

Diperoleh dari "https://id.wikipedia.org/w/index.php?title=Penghantar_listrik&oldid=19519653"